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Abstract

Genus-generation correspondence is one of the basic ideas of TGD
approach. In order to answer various questions concerning the plau-
sibility of the idea, one should know something about the dependence
of the elementary particle vacuum functionals on the vibrational de-
grees of freedom for the boundary component. The construction of
the elementary particle vacuum functionals based on Diff invariance,
2-dimensional conformal symmetry, modular invariance plus natural
stability requirements indeed leads to an essentially unique form of the
vacuum functionals and one can understand why g > 2 bosonic fami-
lies are experimentally absent and why lepton numbers are conserved
separately.

An argument suggesting that the number of the light fermion fam-
ilies is three, is developed. The argument goes as follows. Elementary
particle vacuum functionals represent bound states of g handles and
vanish identically for hyper-elliptic surfaces having g > 2. Since all
g ≤ 2 surfaces are hyper-elliptic, g ≤ 2 and g > 2 elementary particles
cannot appear in same non-vanishing vertex and therefore decouple.
The g > 2 vacuum functionals not vanishing for hyper-elliptic surfaces
represent many particle states of g ≤ 2 elementary particle states be-
ing thus unstable against the decay to g ≤ 2 states. The failure of Z2

conformal symmetry for g > 2 elementary particle vacuum functionals
would in turn explain why they are heavy: this however not absolutely
necessary since these particles would behave like dark matter in any
case.

1 Introduction

One of the basic ideas of TGD approach is genus-generation correspondence:
boundary components of the 3-surface should be carriers of elementary par-
ticle numbers and the observed particle families should correspond to various
boundary topologies. A more general hypothesis is that the 2-surfaces in
question sections of 3-D lightlike causal determinants, say those associated
with wormhole contacts carrying parton quantum numbers

1.1 First series of questions

The most attractive feature of this idea is universality: if the generalized
string model vertices are identified as particle vertices, different particle
families are predicted to behave identically with respect to the known inter-
actions in accordance with observational facts.
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Before one can accept this identification, one should however answer
several questions:

a) Also elementary bosons are predicted to possess family degeneracy:
why the higher boson families have not been observed? Why only g = 0,
”spherical”, bosons seem to be the bosons produced in particle accelerators?
Are g > 0 bosons very massive or are their couplings to fermions very small?

b) Topological reactions changing the genus of boundary component are
possible (some of the handles of 2-surfaces suffers pinch or new handle is
created): why however different lepton numbers are conserved in such a
good approximation?

c) Why the number of the observed elementary particle families seems
to be three [27]?

1.2 Second series of questions

The questions above are obvious if one accepts string model picture about
particle vertices. 25 years with TGD however leads to question the string
model based interpretation of particle vertices and stimulates a slightly dif-
ferent series of questions.

a) What really happens in particle vertices? Is the generalization of
string model diagrams the proper description of particle reactions in TGD
framework? Or should one assume that vertices are direct generalizations of
ordinary Feynmann diagrams so that the Feynmann diagrams correspond to
singular 4-manifolds and vertices to non-singular 3-manifolds at which the
ends of space-time sheets representing particles meet? The elegant treatment
of fermion number and other conserved quantum numbers in the vertices
and construction of the vertices themselves [C7] provides a considerable
support for this view. In this framework string model type vertices would
be interpreted in terms of a propagation of the particle through several paths
simultaneously as in double-slit experiment.

b) The new picture about vertices predicts a profound difference between
fermions and bosons: the lowest bosonic vacuum wave functionals must be
completely delocalized with respect to the genus to guarantee that the gauge
couplings to the fermions are universal. Why this delocalization does not
occur for fermions as the successful calculation of elementary particle masses
strongly suggests [6]? Why would bosonic families correspond to a hierarchy
of delocalized states having g < 3 with a phase phase factor expi2πng/3, n =
0, 1, 2 characterizing the particle family. Why would fermions correspond to
states localized to g ≤ 2? What makes bells ringing is that for topologically
delocalized bosons the finiteness of the vertices would require an effective
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reduction of the number of particle families to a finite number N . For
instance, one can consider a decomposition of the lattice {g ≥ 0} to disjoint
sublattices with a complete bosonic delocalization inside each lattice.

c) Why the number of genera is just three? g ≤ 2 Riemann surfaces
are always hyper-elliptic (have global Z2 conformal symmetry) unlike g > 2
surfaces. Why the complete bosonic de-localization of the light families
should be restricted inside the hyper-elliptic sector? Could the reason be
that g > 2 elementary particle vacuum functionals vanish for hyper-elliptic
surfaces so that states localized to g ≤ 2 surfaces are not transformed to
g > 2 surfaces? Does the Z2 symmetry make these states light?

d) There is also a second intriguing observation. Configuration space
Clifford algebra is a direct integral over von Neumann algebras known as
hyperfinite factors of type II1 [21, C8]. The hierarchy of Jones inclusions for
von Neumann algebras is characterized by a quantum phase q = exp(iπ/N),
N ≥ 3. N = 3 corresponds to the simplest algebraic extension of rationals
and is TGD framework physically completely unique as compared to N > 3
since the value of the inverse of h̄ vanishes for N = 3 apart from small
gravitational corrections [C8]. The huge value of Planck constant means
maximal quantum coherence time natural for elementary particles.

Is the number of light particle families three because elementary particles
correspond to the lowest level in the hierarchy of Jones inclusions and to
the maximally quantal situation perhaps correlating with the hyper-elliptic
symmetry? Could the lattice {g ≥ 0} decompose into a union of disjoint
de-localization sub-lattices with n = 3, 4, 5... elements corresponding to q =
exp(iπ/n)?

1.3 The notion of elementary particle vacuum functional

In order to provide answers to either series of questions one must know some-
thing about the dependence of the elementary particle state functionals on
the geometric properties of the boundary component and in the sequel an
attempt to construct what might be called elementary particle vacuum func-
tionals, is made. Irrespective of what identification of interaction vertices
is adopted, the arguments involved with the construction involve only the
string model type vertices so that the previous discussion seems to apply
more or less as such.

The basic assumptions underlying the construction are the following
ones:

a) Elementary particle vacuum functionals depend on the geometric
properties of the two-surface X2 representing elementary particle.
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b) Vacuum functionals possess extended Diff invariance: all 2-surfaces
on the orbit of the 2-surface X2 correspond to the same value of the vacuum
functional. This condition is satisfied if vacuum functionals have as their
argument, not X2 as such, but some 2- surface Y 2 belonging to the unique
orbit of X2 (determined by the principle selecting preferred extremal of the
Kähler action as a generalized Bohr orbit [B1]) and determined in Diff3

invariant manner.
c) Vacuum functionals possess conformal invariance and therefore for a

given genus depend on a finite number of variables specifying the conformal
equivalence class of Y 2.

d) Vacuum functionals satisfy the cluster decomposition property: when
the surface Y 2 degenerates to a union of two disjoint surfaces (particle de-
cay in string model inspired picture), vacuum functional decomposes into a
product of the vacuum functionals associated with disjoint surfaces.

e) Elementary particle vacuum functionals are stable against the two-
particle decay g → g1 + g2 and one particle decay g → g − 1.

In the following the construction will be described in more detail.
i) Some basic concepts related to the description of the space of the confor-
mal equivalence classes of Riemann surfaces are introduced and the concept
of hyper-ellipticity is introduced. Since theta functions will play a central
role in the construction of the vacuum functionals, also their basic properties
are discussed.
ii) After these preliminaries the construction of elementary particle vacuum
functionals is carried out.
iii) Possible explanations for the experimental absence of the higher fermion
families are considered.

2 Basic facts about Riemann surfaces

In the following some basic aspects about Riemann surfaces will be sum-
marized. The basic topological concepts, in particular the concept of the
mapping class group, are introduced, and the Teichmueller parameters are
defined as conformal invariants of the Riemann surface, which in fact specify
the conformal equivalence class of the Riemann surface completely.

2.1 Mapping class group

The first homology group H1(X2) of a Riemann surface of genus g contains
2g generators [17, 19, 18]: this is easy to understand geometrically since
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Figure 1: Definition of the canonical homology basis

each handle contributes two homology generators. The so called canonical
homology basis can be identified as in Fig. 2.1.

One can define the so called intersection number J(a, b) for two elements
a and b of the homology group as the number of intersection points for
the curves a and b counting the orientation. Since J(a, b) depends on the
homology classes of a and b only, it defines an antisymmetric quadratic form
in H1(X2). In the canonical homology basis the non-vanishing elements of
the intersection matrix are:

J(ai, bj) = −J(bj , ai) = δi,j . (1)

J clearly defines symplectic structure in the homology group.
The dual to the canonical homology basis consists of the harmonic one-

forms αi, βi, i = 1, .., g on X2. These 1-forms satisfy the defining conditions
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∫
ai

αj = δi,j
∫
bi

αj = 0 ,∫
ai

βj = 0
∫
bi

βj = δi,j .
(2)

The following identity helps to understand the basic properties of the Te-
ichmueller parameters

∫

X2
θ ∧ η =

∑

i=1,..,g

[
∫

ai

θ

∫

bi

η −
∫

bi

θ

∫

ai

η] . (3)

The existence of topologically nontrivial diffeomorphisms, when X2 has
genus g > 0, plays an important role in the sequel. Denoting by Diff the
group of the diffeomorphisms of X2 and by Diff0 the normal subgroup of
the diffeomorphisms homotopic to identity, one can define the mapping class
group M as the coset group

M = Diff/Diff0 . (4)

The generators of M are so called Dehn twists along closed curves a of X2.
Dehn twist is defined by excising a small tubular neighborhood of a, twisting
one boundary of the resulting tube by 2π and gluing the tube back into the
surface: see Fig. 2.1.

Figure 2: Definition of the Dehn twist

It can be shown that a minimal set of generators is defined by the fol-
lowing curves
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a1, b1, a
−1
1 a−1

2 , a2, b2, a
−1
2 a−11

3 , ..., ag, bg . (5)

The action of these transformations in the homology group can be re-
garded as a symplectic linear transformation preserving the symplectic form
defined by the intersection matrix. Therefore the matrix representing the
action of Diff on H1(X2) is 2g × 2g matrix M with integer entries leaving
J invariant: MJMT = J . Mapping class group is often referred also as a
symplectic modular group and denoted by Sp(2g, Z). The matrix represent-
ing the action of M in the canonical homology basis decomposes into four
g × g blocks A,B, C and D

M =

(
A B
C D

)
, (6)

where A and D operate in the subspaces spanned by the homology generators
ai and bi respectively and C and D map these spaces to each other. The
notation D = [A,B; C, D] will be used in the sequel: in this notation the
representation of the symplectic form J is J = [0, 1;−1, 0].

2.2 Teichmueller parameters

The induced metric on the two-surface X2 defines a unique complex struc-
ture. Locally the metric can always be written in the form

ds2 = e2φdzdz̄ . (7)

where z is local complex coordinate. When one covers X2 by coordinate
patches, where the line element has the above described form, the transition
functions between coordinate patches are holomorphic and therefore define
a complex structure.

The conformal transformations ξ of X2 are defined as the transforma-
tions leaving invariant the angles between the vectors of X2 tangent space
invariant: the angle between the vectors X and Y at point x is same as the
angle between the images of the vectors under Jacobian map at the image
point ξ(x). These transformations need not be globally defined and in each
coordinate patch they correspond to holomorphic (anti-holomorphic) map-
pings as is clear from the diagonal form of the metric in the local complex
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coordinates. A distinction should be made between local conformal trans-
formations and globally defined conformal transformations, which will be
referred to as conformal symmetries: for instance, for hyper-elliptic surfaces
the group of the conformal symmetries contains two-element group Z2.

Using the complex structure one can decompose one-forms to linear com-
binations of one-forms of type (1, 0) (f(z, z̄)dz) and (0, 1) (f(z, z̄)dz̄). (1, 0)
form ω is holomorphic if the function f is holomorphic: ω = f(z)dz on each
coordinate patch.

There are g independent holomorphic one forms ωi known also as Abelian
differentials of the first kind [17, 19, 18] and one can fix their normalization
by the condition

∫

ai

ωj = δij . (8)

This condition completely specifies ωi.
Teichmueller parameters Ωij are defined as the values of the forms ωi for

the homology generators bj

Ωij =
∫

bj

ωi . (9)

The basic properties of Teichmueller parameters are the following:
i) The g× g matrix Ω is symmetric: this is seen by applying the formula (3)
for θ = ωi and η = ωj .
ii) The imaginary part of Ω is positive: Im(Ω) > 0. This is seen by the ap-
plication of the same formula for θ = η. The space of the matrices satisfying
these conditions is known as Siegel upper half plane.
iii) The space of Teichmueller parameters can be regarded as a coset space
Sp(2g, R)/U(g) [19]: the action of Sp(2g, R) is of the same form as the
action of Sp(2g, Z) and U(g) ⊂ Sp(2g,R) is the isotropy group of a given
point of Teichmueller space.
iv) Teichmueller parameters are conformal invariants as is clear from the
holomorphy of the defining one-forms.
v) Teichmueller parameters specify completely the conformal structure of
Riemann surface [18].

Although Teichmueller parameters fix the conformal structure of the
2-surface completely, they are not in one-to-one correspondence with the
conformal equivalence classes of the two-surfaces:

10



i) The dimension for the space of the conformal equivalence classes is D =
3g − 3, when g > 1 and smaller than the dimension of Teichmueller space
given by d = (g × g + g)/2 for g > 3: all Teichmueller matrices do not
correspond to a Riemann surface. In TGD approach this does not produce
any problems as will be found later.
ii) The action of the topologically nontrivial diffeomorphisms on Teich-
mueller parameters is nontrivial and can be deduced from the action of
the diffeomorphisms on the homology (Sp(2g, Z) transformation) and from
the defining condition

∫
ai

ωj = δi,j : diffeomorphisms correspond to elements
[A,B; C, D] of Sp(2g, Z) and act as generalized Möbius transformations

Ω → (AΩ + B)(CΩ + D)−1 . (10)

All Teichmueller parameters related by Sp(2g, Z) transformations corre-
spond to the same Riemann surface.
iii) The definition of the Teichmueller parameters is not unique since the
definition of the canonical homology basis involves an arbitrary numbering
of the homology basis. The permutation S of the handles is represented by
same g× g orthogonal matrix both in the basis {ai} and {bi} and induces a
similarity transformation in the space of the Teichmueller parameters

Ω → SΩS−1 . (11)

Clearly, the Teichmueller matrices related by a similarity transformations
correspond to the same conformal equivalence class. It is easy to show that
handle permutations in fact correspond to Sp(2g, Z) transformations.

2.3 Hyper-ellipticity

The motivation for considering hyper-elliptic surfaces comes from the fact,
that g > 2 elementary particle vacuum functionals turn out to be vanishing
for hyper-elliptic surfaces and this in turn will be later used to provide a
possible explanation the non-observability of g > 2 particles.

Hyper-elliptic surface X can be defined abstractly as two-fold branched
cover of the sphere having the group Z2 as the group of conformal symmetries
(see [19, 16, 18]. Thus there exists a map π : X → S2 so that the inverse
image π−1(z) for a given point z of S2 contains two points except at a finite
number (say p) of points zi (branch points) for which the inverse image
contains only one point. Z2 acts as conformal symmetries permuting the
two points in π−1(z) and branch points are fixed points of the involution.
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The concept can be generalized [16]: g-hyper-elliptic surface can be de-
fined as a 2-fold covering of genus g surface with a finite number of branch
points. One can consider also p-fold coverings instead of 2-fold coverings:
a common feature of these Riemann surfaces is the existence of a discrete
group of conformal symmetries.

A concrete representation for the hyper-elliptic surfaces [19] is obtained
by studying the surface of C2 determined by the algebraic equation

w2 − Pn(z) = 0 , (12)

where w and z are complex variables and Pn(z) is a complex polynomial.
One can solve w from the above equation

w± = ±
√

Pn(z) , (13)

where the square root is determined so that it has a cut along the positive
real axis. What happens that w has in general two roots (two-fold covering
property), which coincide at the roots zi of Pn(z) and if n is odd, also at
z = ∞: these points correspond to branch points of the hyper-elliptic surface
and their number r is always even: r = 2k. w is discontinuous at the cuts
associated with the square root in general joining two roots of Pn(z) or if n
is odd, also some root of Pn and the point z = ∞. The representation of
the hyper-elliptic surface is obtained by identifying the two branches of w
along the cuts. From the construction it is clear that the surface obtained in
this manner has genus k− 1. Also it is clear that Z2 permutes the different
roots w± with each other and that r = 2k branch points correspond to fixed
points of the involution.

The following facts about the hyper-elliptic surfaces [19, 18] turn out to
be important in the sequel:
i) All g < 3 surfaces are hyper-elliptic.
ii) g ≥ 3 hyper-elliptic surfaces are not in general hyper-elliptic and form a
set of codimension 2 in the space of the conformal equivalence classes [19].

2.4 Theta functions

An extensive and detailed account of the theta functions and their applica-
tions can be found in the book of Mumford [19]. Theta functions appear also
in the loop calculations of string model [17]. In the following the so called
Riemann theta function and theta functions with half integer characteristics

12



will be defined as sections (not strictly speaking functions) of the so called
Jacobian variety.

For a given Teichmueller matrix Ω, Jacobian variety is defined as the
2g-dimensional torus obtained by identifying the points z of Cg ( vectors
with g complex components) under the equivalence

z ∼ z + Ωm + n , (14)

where m and n are points of Zg (vectors with g integer valued components)
and Ω acts in Zg by matrix multiplication.

The definition of Riemann theta function reads as

Θ(z|Ω) =
∑
n

exp(iπn · Ω · n + i2πn · z) . (15)

Here · denotes standard inner product in Cg. Theta functions with half in-
teger characteristics are defined in the following manner. Let a and b denote
vectors of Cg with half integer components (component either vanishes or
equals to 1/2). Theta function with characteristics [a, b] is defined through
the following formula

Θ[a, b](z|Ω) =
∑
n

exp [iπ(n + a) · Ω · (n + a) + i2π(n + a) · (z + b)] .

(16)

A brief calculation shows that the following identity is satisfied

Θ[a, b](z|Ω) = exp(iπa · Ω · a + i2πa · b)×Θ(z + Ωa + b|Ω)
(17)

Theta functions are not strictly speaking functions in the Jacobian vari-
ety but rather sections in an appropriate bundle as can be seen from the
identities

Θ[a, b](z + m|Ω) = exp(i2πa ·m)Θ[a, b](zΩ) ,

Θ[a, b](z + Ωm|Ω) = exp(α)Θ[a, b](z|Ω) ,

exp(α) = exp(−i2πb ·m)exp(−iπm · Ω ·m− 2πm · z) .

(18)
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The number of theta functions is 22g and same as the number of nonequiv-
alent spinor structures defined on two-surfaces. This is not an accident [17]:
theta functions with given characteristics turn out to be in a close relation
to the functional determinants associated with the Dirac operators defined
on the two-surface. It is useful to divide the theta functions to even and
odd theta functions according to whether the inner product 4a · b is even or
odd integer. The numbers of even and odd theta functions are 2g−1(2g + 1)
and 2g−1(2g − 1) respectively.

The values of the theta functions at the origin of the Jacobian variety
understood as functions of Teichmueller parameters turn out to be of special
interest in the following and the following notation will be used:

Θ[a, b](Ω) ≡ Θ[a, b](0|Ω) , (19)

Θ[a, b](Ω) will be referred to as theta functions in the sequel. From the
defining properties of odd theta functions it can be found that they are odd
functions of z and therefore vanish at the origin of the Jacobian variety so
that only even theta functions will be of interest in the sequel.

An important result is that also some even theta functions vanish for
g > 2 hyper-elliptic surfaces : in fact one can characterize g > 2 hyper-
elliptic surfaces by the vanishing properties of the theta functions [19, 18].
The vanishing property derives from conformal symmetry (Z2 in the case
of hyper-elliptic surfaces) and the vanishing phenomenon is rather general
[16]: theta functions tend to vanish for Riemann surfaces possessing dis-
crete conformal symmetries. It is not clear (to the author) whether the
presence of a conformal symmetry is in fact equivalent with the vanishing of
some theta functions. As already noticed, spinor structures and the theta
functions with half integer characteristics are in one-to-one correspondence
and the vanishing of theta function with given half integer characteristics
is equivalent with the vanishing of the Dirac determinant associated with
the corresponding spinor structure or equivalently: with the existence of a
zero mode for the Dirac operator [17]. For odd characteristics zero mode
exists always: for even characteristics zero modes exist, when the surface is
hyper-elliptic or possesses more general conformal symmetries.

3 Elementary particle vacuum functionals

The basic assumption is that elementary particle families correspond to vari-
ous elementary particle vacuum functionals associated with the 2-dimensional
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boundary components of the 3-surface. These functionals need not be lo-
calized to a single boundary topology. Neither need their dependence on
the boundary component be local. An important role in the following con-
siderations is played by the fact that the minimization requirement of the
Kähler action associates a unique 3-surface to each boundary component,
the ”Bohr orbit” of the boundary and this surface provides a considerable
(and necessarily needed) flexibility in the definition of the elementary parti-
cle vacuum functionals. There are several natural constraints to be satisfied
by elementary particle vacuum functionals.

3.1 Extended Diff invariance and Lorentz invariance

Extended Diff invariance is completely analogous to the extension of 3-
dimensional Diff invariance to four-dimensional Diff invariance in the in-
terior of the 3-surface. Vacuum functional must be invariant not only under
diffeomorphisms of the boundary component but also under the diffeomor-
phisms of the 3- dimensional ”orbit” Y 3 of the boundary component. In
other words: the value of the vacuum functional must be same for any time
slice on the orbit the boundary component. This is guaranteed if vacuum
functional is functional of some two-surface Y 2 belonging to the orbit and
defined in Diff3 invariant manner.

An additional natural requirement is Poincare invariance. In the original
formulation of the theory only Lorentz transformations of the light cone were
exact symmetries of the theory. In this framework the definition of Y 2 as
the intersection of the orbit with the hyperboloid

√
mklmkml = a is Diff3

and Lorentz invariant.

3.1.1 Interaction vertices as generalization of stringy vertices

For stringy diagrams Poincare invariance of conformal equivalence class and
general coordinate invariance are far from being a trivial issues. Vertices
are now not completely unique since there is an infinite number of singular
3-manifolds which can be identified as vertices even if one assumes space-
likeness. One should be able to select a unique singular 3-manifold to fix
the conformal equivalence class.

One might hope that Lorentz invariant invariant and general coordinate
invariant definition of Y 2 results by introducing light cone proper time a as
a height function specifying uniquely the point at which 3-surface is singular
(stringy diagrams help to visualize what is involved), and by restricting the
singular 3-surface to be the intersection of a = constant hyperboloid of M4
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containing the singular point with the space-time surface. There would be
non-uniqueness of the conformal equivalence class due to the choice of the
origin of the light cone but the decomposition of the configuration space
of 3-surfaces to a union of configuration spaces characterized by unions of
future and past light cones could resolve this difficulty.

3.1.2 Interaction vertices as generalization of ordinary ones

If the interaction vertices are identified as intersections for the ends of space-
time sheets representing particles, the conformal equivalence class is natu-
rally identified as the one associated with the intersection of the boundary
component or light like causal determinant with the vertex. Poincare invari-
ance of the conformal equivalence class and generalized general coordinate
invariance follow trivially in this case.

3.2 Conformal invariance

Conformal invariance implies that vacuum functionals depend on the con-
formal equivalence class of the surface Y 2 only. What makes this idea so
attractive is that for a given genus g configuration space becomes effectively
finite-dimensional. A second nice feature is that instead of trying to find
coordinates for the space of the conformal equivalence classes one can con-
struct vacuum functionals as functions of the Teichmueller parameters.

That one can construct this kind of functions as suitable functions of
the Teichmueller parameters is not trivial. The essential point is that the
boundary components can be regarded as submanifolds of M4

+ × CP2: as a
consequence vacuum functional can be regarded as a composite function:

2-surface → Teichmueller matrix Ω determined by the induced metric
→ Ωvac(Ω)

Therefore the fact that there are Teichmueller parameters which do not
correspond to any Riemann surface, doesn’t produce any trouble. It should
be noticed that the situation differs from that in the Polyakov formulation of
string models, where one doesn’t assume that the metric of the two-surface
is induced metric (although classical equations of motion imply this).

3.3 Diff invariance

Since several values of the Teichmueller parameters correspond to the same
conformal equivalence class, one must pose additional conditions on the
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functions of the Teichmueller parameters in order to obtain single valued
functions of the conformal equivalence class.

The first requirement of this kind is the invariance under topologically
nontrivial Diff transformations inducing Sp(2g, Z) transformation (A,B; C, D)
in the homology basis. The action of these transformations on Teichmueller
parameters is deduced by requiring that holomorphic one-forms satisfy the
defining conditions in the transformed homology basis. It turns out that
the action of the topologically nontrivial diffeomorphism on Teichmueller
parameters can be regarded as a generalized Möbius transformation:

Ω → (AΩ + B)(CΩ + D)−1 . (20)

Vacuum functional must be invariant under these transformations. It should
be noticed that the situation differs from that encountered in the string mod-
els. In TGD the integration measure over the configuration space is Diff
invariant: in string models the integration measure is the integration mea-
sure of the Teichmueller space and this is not invariant under Sp(2g, Z) but
transforms like a density: as a consequence the counterpart of the vacuum
functional must be also modular covariant since it is the product of vacuum
functional and integration measure, which must be modular invariant.

It is possible to show that the quantities

(Θ[a, b]/Θ[c, d])4 . (21)

and their complex conjugates are Sp(2g, Z) invariants [19] and therefore can
be regarded as basic building blocks of the vacuum functionals.

Teichmueller parameters are not uniquely determined since one can al-
ways perform a permutation of the g handles of the Riemann surface in-
ducing a redefinition of the canonical homology basis (permutation of g
generators). These transformations act as similarities of the Teichmueller
matrix:

Ω → SΩS−1 , (22)

where S is the g × g matrix representing the permutation of the homology
generators understood as orthonormal vectors in the g- dimensional vector
space. Therefore the Teichmueller parameters related by these similarity
transformations correspond to the same conformal equivalence class of the
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Riemann surfaces and vacuum functionals must be invariant under these
similarities.

It is easy to find out that these similarities permute the components of
the theta characteristics: [a, b] → [S(a), S(b)]. Therefore the invariance re-
quirement states that the handles of the Riemann surface behave like bosons:
the vacuum functional constructed from the theta functions is invariant un-
der the permutations of the theta characteristics. In fact, this requirement
brings in nothing new. Handle permutations can be regarded as Sp(2g, Z)
transformations so that the modular invariance alone guarantees invariance
under handle permutations.

3.4 Cluster decomposition property

Consider next the behavior of the vacuum functional in the limit, when
boundary component with genus g splits to two separate boundary com-
ponents of genera g1 and g2 respectively. The splitting into two separate
boundary components corresponds to the reduction of the Teichmueller ma-
trix Ωg to a direct sum of g1 × g1 and g2 × g2 matrices (g1 + g2 = g):

Ωg = Ωg1 ⊕ Ωg2 , (23)

when a suitable definition of the Teichmueller parameters is adopted. The
splitting can also take place without a reduction to a direct sum: the Te-
ichmueller parameters obtained via Sp(2g, Z) transformation from Ωg =
Ωg1 ⊕ Ωg2 do not possess direct sum property in general.

The physical interpretation is obvious: the non-diagonal elements of the
Teichmueller matrix describe the geometric interaction between handles and
at this limit the interaction between the handles belonging to the separate
surfaces vanishes. On the physical grounds it is natural to require that
vacuum functionals satisfy cluster decomposition property at this limit: that
is they reduce to the product of appropriate vacuum functionals associated
with the composite surfaces.

Theta functions satisfy cluster decomposition property [19, 17]. Theta
characteristics reduce to the direct sums of the theta characteristics asso-
ciated with g1 and g2 (a = a1 ⊕ a2, b = b1 ⊕ b2) and the dependence on
the Teichmueller parameters is essentially exponential so that the cluster
decomposition property indeed results:

Θ[a, b](Ωg) = Θ[a1, b1](Ωg1)Θ[a2, b2](Ωg2) . (24)
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Cluster decomposition property holds also true for the products of theta
functions. This property is also satisfied by suitable homogenous polynomi-
als of thetas. In particular, the following quantity playing central role in the
construction of the vacuum functional obeys this property

Q0 =
∑

[a,b]

Θ[a, b]4Θ̄[a, b]4 , (25)

where the summation is over all even theta characteristics (recall that odd
theta functions vanish at the origin of Cg).

Together with the Sp(2g, Z) invariance the requirement of cluster decom-
position property implies that the vacuum functional must be representable
in the form

Ωvac = PM,N (Θ4, Θ̄4)/QMN (Θ4, Θ̄4) (26)

where the homogenous polynomials PM,N and QM,N have same degrees (M
and N as polynomials of Θ[a, b]4 and Θ̄[a, b]4.

3.5 Finiteness requirement

Vacuum functional should be finite. Finiteness requirement is satisfied pro-
vided the numerator QM,N of the vacuum functional is real and positive
definite. The simplest quantity of this type is the quantity Q0 defined previ-
ously and its various powers. Sp(2g, Z) invariance and finiteness requirement
are satisfied provided vacuum functionals are of the following general form

Ωvac =
PN,N (Θ4, Θ̄4)

QN
0

, (27)

where PN,N is homogenous polynomial of degree N with respect to Θ[a, b]4

and Θ̄[a, b]4. In addition PN,N is invariant under the permutations of the
theta characteristics and satisfies cluster decomposition property.

3.6 Stability against the decay g → g1 + g2

Elementary particle vacuum functionals must be stable against the genus
conserving decays g → g1 + g2. This decay corresponds to the limit at
which Teichmueller matrix reduces to a direct sum of the matrices associated
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with g1 and g2 (note however the presence of Sp(2g, Z) degeneracy). In
accordance with the topological description of the particle reactions one
expects that this decay doesn’t occur if the vacuum functional in question
vanishes at this limit.

In general the theta functions are non-vanishing at this limit and van-
ish provided the theta characteristics reduce to a direct sum of the odd
theta characteristics. For g < 2 surfaces this condition is trivial and gives
no constraints on the form of the vacuum functional. For g = 2 surfaces
the theta function Θ(a, b), with a = b = (1/2, 1/2) satisfies the stability
criterion identically (odd theta functions vanish identically), when Teich-
mueller parameters separate into a direct sum. One can however perform
Sp(2g, Z) transformations giving new points of Teichmueller space describ-
ing the decay. Since these transformations transform theta characteristics
in a nontrivial manner to each other and since all even theta characteris-
tics belong to same Sp(2g, Z) orbit [19, 17], the conclusion is that stability
condition is satisfied provided g = 2 vacuum functional is proportional to
the product of fourth powers of all even theta functions multiplied by its
complex conjugate.

If g > 2 there always exists some theta functions, which vanish at this
limit and the minimal vacuum functional satisfying this stability condition
is of the same form as in g = 2 case, that is proportional to the product
of the fourth powers of all even Theta functions multiplied by its complex
conjugate:

Ωvac =
∏

[a,b]

Θ[a, b]4Θ̄[a, b]4/QN
0 , (28)

where N is the number of even theta functions. The results obtained im-
ply that genus-generation correspondence is one to one for g > 1 for the
minimal vacuum functionals. Of course, the multiplication of the minimal
vacuum functionals with functionals satisfying all criteria except stability
criterion gives new elementary particle vacuum functionals: a possible phys-
ical identification of these vacuum functionals is most naturally as some kind
of excited states.

One of the questions posed in the beginning was related to the exper-
imental absence of g > 0, possibly massless, elementary bosons. The pro-
posed stability criterion suggests a nice explanation. The point is that ele-
mentary particles are stable against decays g → g1 +g2 but not with respect
to the decay g → g + sphere. As a consequence the direct emission of g > 0
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gauge bosons is impossible unlike the emission of g = 0 bosons: for instance
the decay muon → electron +(g = 1) photon is forbidden.

3.7 Stability against the decay g → g − 1

This stability criterion states that the vacuum functional is stable against
single particle decay g → g − 1 and, if satisfied, implies that vacuum func-
tional vanishes, when the genus of the surface is smaller than g. In stringy
framework this criterion is equivalent to a separate conservation of various
lepton numbers: for instance, the spontaneous transformation of muon to
electron is forbidden. Notice that this condition doesn’t imply that that the
vacuum functional is localized to a single genus: rather the vacuum func-
tional of genus g vanishes for all surfaces with genus smaller than g. This hi-
erarchical structure should have a close relationship to Cabibbo-Kobayashi-
Maskawa mixing of the quarks.

The stability criterion implies that the vacuum functional must vanish
at the limit, when one of the handles of the Riemann surface suffers a pinch.
To deduce the behavior of the theta functions at this limit, one must find
the behavior of Teichmueller parameters, when i:th handle suffers a pinch.
Pinch implies that a suitable representative of the homology generator ai or
bi contracts to a point.

Consider first the case, when ai contracts to a point. The normalization
of the holomorphic one-form ωi must be preserved so that that ωi must
behaves as 1/z, where z is the complex coordinate vanishing at pinch. Since
the homology generator bi goes through the pinch it seems obvious that the
imaginary part of the Teichmueller parameter Ωii =

∫
bi

ωi diverges at this
limit (this conclusion is made also in [19]): Im(Ωii) →∞.

Of course, this criterion doesn’t cover all possible manners the pinch can
occur: pinch might take place also, when the components of the Teichmueller
matrix remain finite. In the case of torus topology one finds that Sp(2g, Z)
element (A,B;C, D) takes Im(Ω) = ∞ to the point C/D of real axis. This
suggests that pinch occurs always at the boundary of the Teichmueller space:
the imaginary part of Ωij either vanishes or some matrix element of Im(Ω)
diverges.

Consider next the situation, when bi contracts to a point. From the
definition of the Teichmueller parameters it is clear that the matrix elements
Ωkl, with k, l 6= i suffer no change. The matrix element Ωki obviously
vanishes at this limit. The conclusion is that i:th row of Teichmueller matrix
vanishes at this limit. This result is obtained also by deriving the Sp(2g, Z)
transformation permuting ai and bi with each other: in case of torus this
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transformation reads Ω → −1/Ω.
Consider now the behavior of the theta functions, when pinch occurs.

Consider first the limit, when Im(Ωii) diverges. Using the general definition
of Θ[a, b] it is easy to find out that all theta functions for which the i:th
component ai of the theta characteristic is non-vanishing (that is ai = 1/2)
are proportional to the exponent exp(−πΩii/4) and therefore vanish at the
limit. The theta functions with ai = 0 reduce to g − 1 dimensional theta
functions with theta characteristic obtained by dropping i:th components
of ai and bi and replacing Teichmueller matrix with Teichmueller matrix
obtained by dropping i:th row and column. The conclusion is that all theta
functions of type Θ(a, b) with a = (1/2, 1/2, ...., 1/2) satisfy the stability
criterion in this case.

What happens for the Sp(2g, Z) transformed points on the real axis?
The transformation formula for theta function is given by [19, 17]

Θ[a, b]((AΩ + B)(CΩ + D)−1) = exp(iφ)det(CΩ + D)1/2Θ[c, d](Ω) ,

(29)

where

(
c
d

)
=

(
A B
C D

) ((
a
b

)
−

(
(CDT )d/2
(ABT )d/2

))
.

(30)

Here φ is a phase factor irrelevant for the recent purposes and the index d
refers to the diagonal part of the matrix in question.

The first thing to notice is the appearance of the diverging square root
factor, which however disappears from the vacuum functionals (P and Q
have same degree with respect to thetas). The essential point is that theta
characteristics transform to each other: as already noticed all even theta
characteristics belong to the same Sp(2g, Z) orbit. Therefore the theta
functions vanishing at Im(Ωii) = ∞ do not vanish at the transformed points.
It is however clear that for a given Teichmueller parametrization of pinch
some theta functions vanish always.

Similar considerations in the case Ωik = 0, i fixed, show that all theta
functions with b = (1/2, ...., 1/2) vanish identically at the pinch. Also it is
clear that for Sp(2g, Z) transformed points one can always find some vanish-
ing theta functions. The overall conclusion is that the elementary particle
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vacuum functionals obtained by using g → g1 + g2 stability criterion satisfy
also g → g − 1 stability criterion since they are proportional to the product
of all even theta functions. Therefore the only nontrivial consequence of
g → g − 1 criterion is that also g = 1 vacuum functionals are of the same
general form as g > 1 vacuum functionals.

A second manner to deduce the same result is by restricting the con-
sideration to the hyper-elliptic surfaces and using the representation of the
theta functions in terms of the roots of the polynomial appearing in the
definition of the hyper-elliptic surface [19]. When the genus of the surface
is smaller than three (the interesting case), this representation is all what is
needed since all surfaces of genus g < 3 are hyper-elliptic.

Since hyper-elliptic surfaces can be regarded as surfaces obtained by
gluing two compactified complex planes along the cuts connecting various
roots of the defining polynomial it is obvious that the process g → g − 1
corresponds to the limit, when two roots of the defining polynomial coincide.
This limit corresponds either to disappearance of a cut or the fusion of two
cuts to a single cut. Theta functions are expressible as the products of
differences of various roots (Thomae’s formula [19])

Θ[a, b]4 ∝
∏

i<j∈T

(zi − zj)
∏

k<l∈CT

(zk − zl) , (31)

where T denotes some subset of {1, 2, ..., 2g} containing g + 1 elements and
CT its complement. Hence the product of all even theta functions vanishes,
when two roots coincide. Furthermore, stability criterion is satisfied only by
the product of the theta functions.

Lowest dimensional vacuum functionals are worth of more detailed con-
sideration.
i) g = 0 particle family corresponds to a constant vacuum functional: by
continuity this vacuum functional is constant for all topologies.
ii) For g = 1 the degree of P and Q as polynomials of the theta functions is
24: the critical number of transversal degrees of freedom in bosonic string
model! Probably this result is not an accident.
ii) For g = 2 the corresponding degree is 80 since there are 10 even genus 2
theta functions.

There are large numbers of vacuum functionals satisfying the relevant
criteria, which do not satisfy the proposed stability criteria. These vacuum
functionals correspond either to many particle states or to unstable single
particle states.
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3.8 Continuation of the vacuum functionals to higher genus
topologies

From continuity it follows that vacuum functionals cannot be localized to
single boundary topology. Besides continuity and the requirements listed
above, a natural requirement is that the continuation of the vacuum func-
tional from the sector g to the sector g + k reduces to the product of the
original vacuum functional associated with genus g and g = 0 vacuum func-
tional at the limit when the surface with genus g + k decays to surfaces
with genus g and k: this requirement should guarantee the conservation of
separate lepton numbers although different boundary topologies suffer mix-
ing in the vacuum functional. These requirements are satisfied provided the
continuation is constructed using the following rule:

Perform the replacement

Θ[a, b]4 →
∑

c,d

Θ[a⊕ c, b⊕ d]4 (32)

for each fourth power of the theta function. Here c and d are Theta char-
acteristics associated with a surface with genus k. The same replacement is
performed for the complex conjugates of the theta function. It is straight-
forward to check that the continuations of elementary particle vacuum func-
tionals indeed satisfy the cluster decomposition property and are continuous.

To summarize, the construction has provided hoped for answers to some
questions stated in the beginning: stability requirements explain the sepa-
rate conservation of lepton numbers and the experimental absence of g > 0
elementary bosons. What has not not been explained is the experimental
absence of g > 2 fermion families. The vanishing of the g > 2 elementary
particle vacuum functionals for the hyper-elliptic surfaces however suggest a
possible explanation: under some conditions on the surface X2 the surfaces
Y 2 are hyper-elliptic or possess some conformal symmetry so that elemen-
tary particle vacuum functionals vanish for them. This conjecture indeed
might make sense since the surfaces Y 2 are determined by the asymptotic
dynamics and one might hope that the surfaces Y 2 are analogous to the
final states of a dissipative system.

4 Explanations for the absence of the g > 2 ele-
mentary particles from spectrum

The decay properties of the intermediate gauge bosons [27] are consistent
with the assumption that the number of the light neutrinos is N = 3. Also
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cosmological considerations pose upper bounds on the number of the light
neutrino families and N = 3 seems to be favored [28]. It must be however
emphasized that p-adic considerations [F5] encourage the consideration the
existence of higher genera with neutrino masses such that they are not pro-
duced in the laboratory at present energies. In any case, for TGD approach
the finite number of light fermion families is a potential difficulty since genus-
generation correspondence suggests that the number of the fermion (and
possibly also boson) families is infinite. Therefore one had better to find a
good argument showing that the number of the observed neutrino families,
or more generally, of the observed elementary particle families, is small also
in the world described by TGD.

It will be later found that also TGD inspired cosmology requires that
the number of the effectively massless fermion families must be small after
Planck time. This suggests that boundary topologies with handle number
g > 2 are unstable and/or very massive so that they, if present in the
spectrum, disappear from it after Planck time, which correspond to the
value of the light cone proper time a ' 10−11 seconds.

In accordance with the spirit of TGD approach it is natural to wonder
whether some geometric property differentiating between g > 2 and g < 3
boundary topologies might explain why only g < 3 boundary components are
observable. One can indeed find a good candidate for this kind of property:
namely hyper-ellipticity, which states that Riemann surface is a two-fold
branched covering of sphere possessing two-element group Z2 as conformal
automorphisms. All g < 3 Riemann surfaces are hyper-elliptic unlike g > 2
Riemann surfaces, which in general do not posses this property. Thus it
is natural to consider the possibility that hyper-ellipticity or more general
conformal symmetries might explain why only g < 2 topologies correspond
to the observed elementary particles.

As regards to the present problem the crucial observation is that some
even theta functions vanish for the hyper-elliptic surfaces with genus g > 2
[19]. What is essential is that these surfaces have the group Z2 as conformal
symmetries. Indeed, the vanishing phenomenon is more general. Theta
functions tend to vanish for g > 2 two-surfaces possessing discrete group of
conformal symmetries [16]: for instance, instead of sphere one can consider
branched coverings of higher genus surfaces.

From the general expression of the elementary particle vacuum functional
it is clear that elementary particle vacuum functionals vanish, when Y 2 is
hyper-elliptic surface with genus g > 2 and one might hope that this is
enough to explain why the number of elementary particle families is three.
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4.1 Hyper-ellipticity implies the separation of g ≤ 2 and g > 2
sectors to separate worlds

If the vertices are defined as intersections of space-time sheets of elemen-
tary particles and if elementary particle vacuum functionals are required to
have Z2 symmetry, the localization of elementary particle vacuum function-
als to g ≤ 2 topologies occurs automatically. Even if one allows as limiting
case vertices for which 2-manifolds are pinched to topologies intermediate
between g > 2 and g ≤ 2 topologies, Z2 symmetry present for both topo-
logical interpretations implies the vanishing of this kind of vertices. This
applies also in the case of stringy vertices so that also particle propagation
would respect the effective number of particle families. g > 2 and g ≤ 2
topologies would behave much like their own worlds in this approach. This
is enough to explain the experimental findings if one can understand why
the g > 2 particle families are absent as incoming and outgoing states or are
very heavy.

4.2 What about g > 2 vacuum functionals which do not van-
ish for hyper-elliptic surfaces?

The vanishing of all g ≥ 2 vacuum functionals for hyper-elliptic surfaces
cannot hold true generally. There must exist vacuum functionals which do
satisfy this condition. This suggest that elementary particle vacuum func-
tionals for g > 2 states have interpretation as bound states of g handles and
that the more general states which do not vanish for hyper-elliptic surfaces
correspond to many-particle states composed of bound states g ≤ 2 han-
dles and cannot thus appear as incoming and outgoing states. Thus g > 2
elementary particles would decouple from g ≤ 2 states.

4.3 Should higher elementary particle families be heavy?

TGD predicts an entire hierarchy of scaled up variants of standard model
physics for which particles do not appear in the vertices containing the
known elementary particles and thus behave like dark matter [A1, C8]. Also
g > 2 elementary particles would behave like dark matter and in principle
there is no absolute need for them to be heavy.

The safest option would be that g > 2 elementary particles are heavy and
the breaking of Z2 symmetry for g ≥ 2 states could guarantee this. p-Adic
considerations lead to a general mass formula for elementary particles such
that the mass of the particle is proportional to 1√

p [6]. Also the dependence
of the mass on particle genus is completely fixed by this formula. What
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remains however open is what determines the p-adic prime associated with
a particle with given quantum numbers. Of course, it could quite well occur
that p is much smaller for g > 2 genera than for g ≤ 2 genera.

5 Could also gauge bosons correspond to worm-
hole contacts?

The developments in the formulation of quantum TGD which have taken
place during the period 2005-2007 [C1, C2, C3] suggest dramatic simpli-
fications of the general picture discussed above. p-Adic mass calculations
[F3, F4, F5] leave a lot of freedom concerning the detailed identification of
elementary particles. The basic open question is whether the theory is free
at parton level as suggested by the recent view about the construction of
S-matrix and by the almost topological QFT property of quantum TGD at
parton level [C2, C3]. Or more concretely: do partonic 2-surfaces carry only
free many-fermion states or can they carry also bound states of fermions
and anti-fermions identifiable as bosons?

What is known that Higgs boson corresponds naturally to a wormhole
contact [C5]. The wormhole contact connects two space-time sheets with
induced metric having Minkowski signature. Wormhole contact itself has an
Euclidian metric signature so that there are two wormhole throats which are
light-like 3-surfaces and would carry fermion and anti-fermion number in the
case of Higgs. Irrespective of the identification of the remaining elementary
particles MEs (massless extremals, topological light rays) would serve as
space-time correlates for elementary bosons. Higgs type wormhole contacts
would connect MEs to the larger space-time sheet and the coherent state of
neutral Higgs would generate gauge boson mass and could contribute also
to fermion mass.

The basic question is whether this identification applies also to gauge
bosons (certainly not to graviton). This identification would imply quite a
dramatic simplification since the theory would be free at single parton level
and the only stable parton states would be fermions and anti-fermions. As
will be found this identification allows to understand the dramatic difference
between graviton and other gauge bosons and the weakness of gravitational
coupling, gives a connection with the string picture of gravitons, and predicts
that stringy states are directly relevant for nuclear and condensed matter
physics as has been proposed already earlier [F8, J1, J2]. In order to avoid
confusion it must be emphasized that this picture is not consistent with the
older picture discussed in previous sections.

27



5.1 Option I: Only Higgs as a wormhole contact

The only possibility considered hitherto has been that elementary bosons
correspond to partonic 2-surfaces carrying fermion-anti-fermion pair such
that either fermion or anti-fermion has a non-physical polarization. For
this option CP2 type extremals condensed on MEs and travelling with light
velocity would serve as a model for both fermions and bosons. MEs are
not absolutely necessary for this option. The couplings of fermions and
gauge bosons to Higgs would be very similar topologically. Consider now
the counter arguments.

a) This option fails if the theory at partonic level is free field theory
so that anti-fermions and elementary bosons cannot be identified as bound
states of fermion and anti-fermion with either of them having non-physical
polarization.

b) Mathematically oriented mind could also argue that the asymme-
try between Higgs and elementary gauge bosons is not plausible whereas
asymmetry between fermions and gauge bosons is. Mathematician could
continue by arguing that if wormhole contacts with net quantum numbers
of Higgs boson are possible, also those with gauge boson quantum numbers
are unavoidable.

c) Physics oriented thinker could argue that since gauge bosons do not
exhibit family replication phenomenon (having topological explanation in
TGD framework) there must be a profound difference between fermions and
bosons.

5.2 Option II: All elementary bosons as wormhole contacts

The hypothesis that quantum TGD reduces to a free field theory at parton
level is consistent with the almost topological QFT character of the theory
at this level. Hence there are good motivations for studying explicitly the
consequences of this hypothesis.

5.2.1 Elementary bosons must correspond to wormhole contacts
if the theory is free at parton level

Also gauge bosons could correspond to wormhole contacts connecting MEs
[D1] to larger space-time sheet and propagating with light velocity. For
this option there would be no need to assume the presence of non-physical
fermion or anti-fermion polarization since fermion and anti-fermion would
reside at different wormhole throats. Only the definition of what it is to
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be non-physical would be different on the light-like 3-surfaces defining the
throats.

The difference would naturally relate to the different time orientations
of wormhole throats and make itself manifest via the definition of light-like
operator o = xkγk appearing in the generalized eigenvalue equation for the
modified Dirac operator [B4, C1]. For the first throat ok would correspond
to a light-like tangent vector tk of the partonic 3-surface and for the second
throat to its M4 dual t̂k in a preferred rest system in M4 (implied by the
basic construction of quantum TGD). What is nice that this picture non-asks
the question whether tk or t̂k should appear in the modified Dirac operator.

Rather satisfactorily, MEs (massless extremals, topological light rays)
would be necessary for the propagation of wormhole contacts so that they
would naturally emerge as classical correlates of bosons. The simplest model
for fermions would be as CP2 type extremals topologically condensed on
MEs and for bosons as pieces of CP2 type extremals connecting ME to the
larger space-time sheet. For fermions topological condensation is possible to
either space-time sheet.

5.2.2 What about light-like boundaries and macroscopic worm-
hole contacts?

Light-like boundaries of the space-time sheet can have macroscopic size and
can carry free many-fermion states but not elementary bosons. Number
theoretic braids and anyons might be assignable to these structures. De-
formations of cosmic strings to magnetic flux tubes with a light-like outer
boundary are especially interesting in this respect.

If the ends of a string like object move with light velocity as implied
by the usual stringy boundary conditions they indeed define light-like 3-
surfaces. Many-fermion states could be assigned at the ends of string. One
could also connect in pairwise manner the ends of two time-like strings
having opposite time orientation using two space-like strings so that the
analog of boson state consisting of two wormhole contacts and analogous
to graviton would result. ”Wormhole throats” could have arbitrarily long
distance in M4.

Wormhole contacts can be regarded as slightly deformed CP2 type ex-
tremals only if the size of M4 projection is not larger than CP2 size. The
natural question is whether one can construct macroscopic wormhole con-
tacts at all.

a) The throats of wormhole contacts cannot belong to vacuum extremals.
One might however hope that small deformations of macrosopic vacuum
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extremals could yield non-vacuum wormhole contacts of macroscopic size.
b) A large class of macroscopic wormhole contacts which are vacuum

extremals consists of surfaces of form X2
1 ×X2

2 ⊂ (M1×Y 2)×E3, where Y 2

is Lagrangian manifold of CP2 (induced Kähler form vanishes) and M4 =
M1 × E3 represents decomposition of M1 to time-like and space-like sub-
spaces. X2

2 is a stationary surface of E3. Both X2
1 ⊂ M1×CP2 and X2

2 have
an Euclidian signature of metric except at light-like boundaries X1

a×X2
2 and

X1
b ×X2

2 defined by ends of X2
1 defining the throats of the wormhole contact.

c) This kind of vacuum extremals could define an extremely general
class of macroscopic wormhole contacts as their deformations. These worm-
hole contacts describe an interaction of wormhole throats regarded as closed
strings as is clear from the fact that X2 can be visualized as an analog of
closed string world sheet X2

1 in M1×Y 2 describing a reaction leading from a
state with a given number of incoming closed strings to a state with a given
number of outgoing closed strings which correspond to wormhole throats at
the two space-time sheets involved.

5.2.3 Phase conjugate states and matter- antimatter asymmetry

By fermion number conservation fermion-boson and boson-boson couplings
must involve the fusion of partonic 3-surfaces along their ends identified as
wormhole throats. Bosonic couplings would differ from fermionic couplings
only in that the process would be 2 → 4 rather than 1 → 3 at the level of
throats.

The decay of boson to an ordinary fermion pair with fermion and anti-
fermion at the same space-time sheet would take place via the basic vertex
at which the 2-dimensional ends of light-like 3-surfaces are identified. The
sign of the boson energy would tell whether boson is ordinary boson or its
phase conjugate (say phase conjugate photon of laser light) and also dictate
the sign of the time orientation of fermion and anti-fermion resulting in the
decay.

The two space-time sheets of opposite time orientation associated with
bosons would naturally serve as space-time correlates for the positive and
negative energy parts of the zero energy state and the sign of boson energy
would tell whether it is phase conjugate or not. In the case of fermions
second space-time sheet is not absolutely necessary and one can imagine
that fermions in initial/final states correspond to single space-time sheet of
positive/negative time orientation.

Also a candidate for a new kind interaction vertex emerges. The split-
ting of bosonic wormhole contact would generate fermion and time-reversed
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anti-fermion having interpretation as a phase conjugate fermion. This pro-
cess cannot correspond to a decay of boson to ordinary fermion pair. The
splitting process could generate matter-antimatter asymmetry in the sense
that fermionic antimatter would consist dominantly of negative energy anti-
fermions at space-time sheets having negative time orientation [D5, D6].

This vertex would define the fundamental interaction between matter
and phase conjugate matter. Phase conjugate photons are in a key role
in TGD based quantum model of living matter. This involves model for
memory as communications in time reversed direction, mechanism of in-
tentional action involving signalling to geometric past, and mechanism of
remote metabolism involving sending of negative energy photons to the en-
ergy reservoir [K1]. The splitting of wormhole contacts has been considered
as a candidate for a mechanism realizing Boolean cognition in terms of ”cog-
nitive neutrino pairs” resulting in the splitting of wormhole contacts with
net quantum numbers of Z0 boson [J3, M6].

5.3 Graviton and other stringy states

Fermion and anti-fermion can give rise to only single unit of spin since
it is impossible to assign angular momentum with the relative motion of
wormhole throats. Hence the identification of graviton as single wormhole
contact is not possible. The only conclusion is that graviton must be a
superposition of fermion-anti-fermion pairs and boson-anti-boson pairs with
coefficients determined by the coupling of the parton to graviton. Graviton-
graviton pairs might emerge in higher orders. Fermion and anti-fermion
would reside at the same space-time sheet and would have a non-vanishing
relative angular momentum. Also bosons could have non-vanishing relative
angular momentum and Higgs bosons must indeed possess it.

Gravitons are stable if the throats of wormhole contacts carry non-
vanishing gauge fluxes so that the throats of wormhole contacts are con-
nected by flux tubes carrying the gauge flux. The mechanism producing
gravitons would the splitting of partonic 2-surfaces via the basic vertex.
A connection with string picture emerges with the counterpart of string
identified as the flux tube connecting the wormhole throats. Gravitational
constant would relate directly to the value of the string tension.

The TGD view about coupling constant evolution [C5] predicts G ∝ L2
p,

where Lp is p-adic length scale, and that physical graviton corresponds to
p = M127 = 2127 − 1. Thus graviton would have geometric size of order
Compton length of electron which is something totally new from the point
of view of usual Planck length scale dogmatism. In principle an entire p-adic
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hierarchy of gravitational forces is possible with increasing value of G.
The explanation for the small value of the gravitational coupling strength

serves as a test for the proposed picture. The exchange of ordinary gauge
boson involves the exchange of single CP2 type extremal giving the expo-
nent of Kähler action compensated by state normalization. In the case of
graviton exchange two wormhole contacts are exchanged and this gives sec-
ond power for the exponent of Kähler action which is not compensated. It
would be this additional exponent that would give rise to the huge reduction
of gravitational coupling strength from the naive estimate G ∼ L2

p.
Gravitons are obviously not the only stringy states. For instance, one

obtains spin 1 states when the ends of string correspond to gauge boson and
Higgs. Also non-vanishing electro-weak and color quantum numbers are pos-
sible and stringy states couple to elementary partons via standard couplings
in this case. TGD based model for nuclei as nuclear strings having length
of order L(127) [F8] suggests that the strings with light M127 quark and
anti-quark at their ends identifiable as companions of the ordinary graviton
are responsible for the strong nuclear force instead of exchanges of ordinary
mesons or color van der Waals forces.

Also the TGD based model of high Tc super-conductivity involves stringy
states connecting the space-time sheets associated with the electrons of the
exotic Cooper pair [J1, J2]. Thus stringy states would play a key role in
nuclear and condensed matter physics, which means a profound departure
from stringy wisdom, and breakdown of the standard reductionistic picture.

5.4 Spectrum of non-stringy states

The 1-throat character of fermions is consistent with the generation-genus
correspondence. The 2-throat character of bosons predicts that bosons are
characterized by the genera (g1, g2) of the wormhole throats. Note that the
interpretation of fundamental fermions as wormhole contacts with second
throat identified as a Fock vacuum is excluded.

The general bosonic wave-function would be expressible as a matrix
Mg1,g2 and ordinary gauge bosons would correspond to a diagonal matrix
Mg1,g2 = δg1,g2 as required by the absence of neutral flavor changing cur-
rents (say gluons transforming quark genera to each other). 8 new gauge
bosons are predicted if one allows all 3 × 3 matrices with complex entries
orthonormalized with respect to trace meaning additional dynamical SU(3)
symmetry. Ordinary gauge bosons would be SU(3) singlets in this sense.
The existing bounds on flavor changing neutral currents give bounds on the
masses of the boson octet. The 2-throat character of bosons should relate
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to the low value T = 1/n ¿ 1 for the p-adic temperature of gauge bosons
as contrasted to T = 1 for fermions.

If one forgets the complications due to the stringy states (including gravi-
ton), the spectrum of elementary fermions and bosons is amazingly simple
and almost reduces to the spectrum of standard model. In the fermionic sec-
tor one would have fermions of standard model. By simple counting leptonic
wormhole throat could carry 23 = 8 states corresponding to 2 polarization
states, 2 charge states, and sign of lepton number giving 8+8=16 states
altogether. Taking into account phase conjugates gives 16+16=32 states.

In the non-stringy boson sector one would have bound states of fermions
and phase conjugate fermions. Since only two polarization states are al-
lowed for massless states, one obtains (2 + 1) × (3 + 1) = 12 states plus
phase conjugates giving 12+12=24 states. The addition of color singlet
states for quarks gives 48 gauge bosons with vanishing fermion number and
color quantum numbers. Besides 12 electro-weak bosons and their 12 phase
conjugates there are 12 exotic bosons and their 12 phase conjugates. For
the exotic bosons the couplings to quarks and leptons are determined by the
orthogonality of the coupling matrices of ordinary and boson states. For ex-
otic counterparts of W bosons and Higgs the sign of the coupling to quarks
is opposite. For photon and Z0 also the relative magnitudes of the cou-
plings to quarks must change. Altogether this makes 48+16+16=80 states.
Gluons would result as color octet states. Family replication would extend
each elementary boson state into SU(3) octet and singlet and elementary
fermion states into SU(3) triplets.

5.5 Higgs mechanism

Consider next the generation of mass as a vacuum expectation value of Higgs
when also gauge bosons correspond to wormhole contacts. The presence of
Higgs condensate should make the simple rectilinear ME curved so that the
average propagation of fields would occur with a velocity less than light
velocity. Field equations allow MEs of this kind as solutions [D1].

The finite range of interaction characterized by the gauge boson mass
should correlate with the finite range for the free propagation of worm-
hole contacts representing bosons along corresponding ME. The finite range
would result from the emission of Higgs like wormhole contacts from gauge
boson like wormhole contact leading to the generation of coherent states of
neutral Higgs particles. The emission would also induce non-rectilinearity
of ME as a correlate for the recoil in the emission of Higgs.

Higgs expectation should have space-time correlate appearing in the
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modified Dirac operator. A good candidate is p-adic thermal average for
the generalized eigenvalue λ of the modified Dirac operator vanishing for
the zero modes. Thermal mass squared as opposed to Higgs contribution
would correspond to the average of integer valued conformal weight. For
bosons (in particular Higgs boson!) it is simply the sum of expectations for
the two wormhole throats.

Both contributions are basically thermal which raises the question whether
the interpretation in terms of coherent state of Higgs field (and essentially
quantal notion) is really appropriate unless also thermal states can be re-
garded as genuine quantum states. The matrix characterizing time-like en-
tanglement for the zero energy quantum state can be also thermal S-matrix
with respect to the incoming and outgoing partons (hyper-finite factors of
type III allow the analog of thermal QFT at the level of quantum states.
This allows also a first principle description of p-adic thermodynamics.

6 Elementary particle vacuum functionals for dark
matter

One of the open questions is how dark matter hierarchy reflects itself in
the properties of the elementary particles. The basic questions are how the
quantum phase q = ep(2iπ/n) makes itself visible in the solution spectrum
of the modified Dirac operator D and how elementary particle vacuum func-
tionals depend on q. Considerable understanding of these questions emerged
recently. One can generalize modular invariance to fractional modular in-
variance for Riemann surfaces possessing Zn symmetry and perform a similar
generalization for theta functions and elementary particle vacuum function-
als. In particular, without any further assumptions n = 2 dark fermions
have only three families. The existence of space-time correlate for fermionic
2-valuedness suggests that fermions indeed correspond to n = 2, or more
generally to even values of n, so that this result would hold quite generally.
Elementary bosons (actually exotic particles) would correspond to n = 1,
and more generally odd values of n, and could have also higher families.

6.1 Connection between Hurwitz zetas, quantum groups, and
hierarchy of Planck constants?

The action of modular group SL(2,Z) on Riemann zeta [23] is induced by its
action on theta function [24]. The action of the generator τ → −1/τ on theta
function is essential in providing the functional equation for Riemann Zeta.
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Usually the action of the generator τ → τ + 1 on Zeta is not considered
explicitly. The surprise was that the action of the generator τ → τ + 1
on Riemann Zeta does not give back Riemann zeta but a more general
function known as Hurwitz zeta ζ(s, z) for z = 1/2. One finds that Hurwitz
zetas for certain rational values of argument define in a well defined sense
representations of fractional modular group to which quantum group can be
assigned naturally. This could allow to code the value of the quantum phase
q = exp(i2π/n) to the solution spectrum of the modified Dirac operator D.

6.1.1 Hurwitz zetas

Hurwitz zeta is obtained by replacing integers m with m + z in the defining
sum formula for Riemann Zeta:

ζ(s, z) =
∑
m

(m + z)−s . (33)

Riemann zeta results for z = n.
Hurwitz zeta obeys the following functional equation for rational z = m/n
of the second argument [22]:

ζ(1− s,
m

n
) =

2Γ(s)
2πn

s n∑

k=1

cos(
πs

2
− 2πkm

n
)ζ(s,

k

n
) . (34)

The representation of Hurwitz zeta in terms of θ [22] is given by the equation

∫ ∞

0
[θ(z, it)− 1] ts/2 dt

t
= π(1−s)/2Γ(

1− s

2
) [ζ(1− s, z) + ζ(1− s, 1− z)] .(35)

By the periodicity of theta function this gives for z = n Riemann zeta.

6.1.2 The action of τ → τ + 1 transforms ζ(s, 0) to ζ(s, 1/2)

The action of the transformations τ → τ + 1 on the integral representation
of Riemann Zeta [23] in terms of θ function [24]

θ(z; τ)− 1 = 2
∞∑

n=1

[exp(iπτ)]n
2
cos(2πnz) (36)

is given by
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π−s/2Γ(
s

2
)ζ(s) =

∫ ∞

0
[θ(0; it)− 1]ts/2 dt

t
. (37)

Using the first formula one finds that the shift τ = it → τ+1 in the argument
θ induces the shift θ(0; τ) → θ(1/2; τ). Hence the result is Hurwitz zeta
ζ(s, 1/2). For τ → τ + 2 one obtains Riemann Zeta.

Thus ζ(s, 0) and ζ(s, 1/2) behave like a doublet under modular trans-
formations. Under the subgroup of modular group obtained by replacing
τ → τ+1 with τ → τ+2 Riemann Zeta forms a singlet. The functional equa-
tion for Hurwitz zeta relates ζ(1 − s, 1/2) to ζ(s, 1/2) and ζ(s, 1) = ζ(s, 0)
so that also now one obtains a doublet, which is not surprising since the
functional equations directly reflects the modular transformation properties
of theta functions. This doublet might be the proper object to study instead
of singlet if one considers full modular invariance.

6.1.3 Hurwitz zetas form n-plets closed under the action of frac-
tional modular group

The inspection of the functional equation for Hurwitz zeta given above
demonstrates that ζ(s,m/n), m = 0, 1, ..., n, form in a well-defined sense an
n-plet under fractional modular transformations obtained by using genera-
tors τ → −1/τ and τ → τ + 2/n. The latter corresponds to the unimodular
matrix (a, b; c, d) = (1, 2/n; 0, 1). These matrices obviously form a group.
Note that Riemann zeta is always one member of the multiplet containing
n Hurwitz zetas.

These observations bring in mind fractionization of quantum numbers,
quantum groups corresponding to the quantum phase q = exp(i2π/n), and
the inclusions for hyper-finite factors of type II1 partially characterized by
these quantum phases. Fractional modular group obtained using generator
τ → τ +2/n and Hurwitz zetas ζ(s, k/n) could very naturally relate to these
and related structures.

6.2 Hurwitz zetas and dark matter

These observations suggest a direct application to quantum TGD.

6.2.1 Basic vision bout dark matter

a) In TGD framework inclusions of HFFs of type II1 are directly related to
the hierarchy of Planck constants involving a generalization of the notion of
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imbedding space obtained by gluing together copies of 8-D H = M4 × CP2

with a discrete bundle structure H → H/Zna × Znb
together along the 4-D

intersections of the associated base spaces [C9]. A book like structure results
and various levels of dark matter correspond to the pages of this book. One
can say that elementary particles proper are maximally quantum critical and
live in the 4-D intersection of these imbedding spaces whereas their ”field
bodies” reside at the pages of the Big Book. Note that analogous book like
structures results when real and various p-adic variants of the imbedding
space are glued together along common algebraic points.

b) The integers na and nb give Planck constant as h̄/h̄0 = na/nb, whose
most general value is a rational number. In Platonic spirit one can argue
that number theoretically simple integers involving only powers of 2 and
Fermat primes are favored physically. Phase transitions between different
matters occur at the intersection.

c) The inclusions N ⊂M of HFFs relate also to quantum measurement
theory with finite measurement resolution with N defining the measurement
resolution so that N-rays replace complex rays in the projection postulate
and quantum space M/N having fractional dimension effectively replaces
M.

d) The basic hypothesis is that the inverses of zeta function or of more
general variants of zeta coding information about the algebraic structure
of the partonic 2-surface appear in the admittedly speculative fundamental
formula for the generalized eigenvalues of modified Dirac operator D. This
formula is consistent with the generalized eigenvalue equation for D but is
not the only one that one can imagine.

e) The generalized eigen spectrum of D should code information both
about the p-adic prime p characterizing particle and about quantum phases
q = exp(i2π/n) assignable to the particle in M4 and CP2 degrees of freedom.
I understand how p-adic primes appear in the spectrum of D and therefore
how coupling constant evolution emerges at the level of free field theory so
that radiative corrections can vanish without the loss of coupling constant
evolution [C5]. The problem has been to understand how the quantum
phase characterizing the sector of the generalized imbedding space could
make itself visible in these formulas and therefore in quantum dynamics at
the level of free spinor fields. The replacement of Riemann zeta with an
n-plet of Hurwitz zetas would resolve this problem.

f) Geometrically the fractional modular invariance would naturally relate
to the fact that Riemann surface (partonic 2-surface) can be seen as an
na × nb-fold covering of its projection to the base space of H: fractional
modular transformations corresponding to na and nb would relate points
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at different sheets of the covering of M4 and CP2. This means Znanb
=

Zna ×Znb
conformal symmetry. This suggests that the fractionization could

be a completely general phenomenon happening also for more general zeta
functions.

6.2.2 What about exceptional cases n = 1 and n = 2?

Also n = 1 and n = 2 are present in the hierarchy of Hurwitz zetas (singlet
and doublet). They do not correspond to allowed Jones inclusion since one
has n > 2 for them. What could this mean?

a) It would seem that the fractionization of modular group relates to
Jones inclusions (n > 2) giving rise to fractional statistics. n = 2 corre-
sponding to the full modular group Sl(2,Z) could relate to the very special
role of 2-valued logic, to the degeneracy of n = 2 polygon in plane, to the
very special role played by 2-component spinors playing exceptional role in
Riemann geometry with spinor structure, and to the canonical representa-
tion of HFFs of type II1 as fermionic Fock space (spinors in the world of
classical worlds). Note also that SU(2) defines the building block of compact
non-commutative Lie groups and one can obtain Lie-algebra generators of
Lie groups from n copies of SU(2) triplets and posing relations which dis-
tinguish the resulting algebra from a direct sum of SU(2) algebras.

b) Also n = 2-fold coverings M4 → M4/Z2 and CP2 → CP2/Z2 seem
to make sense. One can argue that by quantum classical correspondence
the spin half property of imbedding space spinors should have space-time
correlate. Could n = 2 coverings allow to define the space-time correlates for
particles having half odd integer spin or weak isospin? If so, bosons would
correspond to n = 1 and fermions to n = 2. One could of course counter
argue that induced spinor fields already represent fermions at space-time
level and there is no need for the doubling of the representation.

The trivial group Z1 and Z2 are exceptional since Z1 does not define any
quantization axis and Z2 allows any quantization axis orthogonal to the line
connecting two points. For n ≥ 3 Zn fixes the direction of quantization axis
uniquely. This obviously correlates with n ≥ 3 for Jones inclusions.

6.2.3 Dark elementary particle functionals

One might wonder what might be the dark counterparts of elementary parti-
cle vacuum functionals. Theta functions θ[a,b](z,Ω) with characteristic [a, b]
for Riemann surface of genus g as functions of z and Teichmueller parame-
ters Ω are the basic building blocks of modular invariant vacuum functionals
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defined in the finite-dimensional moduli space whose points characterize the
conformal equivalence class of the induced metric of the partonic 2-surface.
Obviously, kind of spinorial variants of theta functions are in question with
g + g spinor indices for genus g.

The recent case corresponds to g = 1 Riemann surface (torus) so that a
and b are g = 1-component vectors having values 0 or 1/2 and Hurwitz zeta
corresponds to θ[0,1/2]. The four Jacobi theta functions listed in Wikipedia
[24] correspond to these thetas for torus. The values for a and b are 0 and
1 for them but this is a mere convention.

The extensions of modular group to fractional modular groups obtained
by replacing integers with integers shifted by multiples of 1/n suggest the
existence of new kind of q-theta functions with characteristics [a, b] with a
and b being g-component vectors having fractional values k/n, k = 0, 1...n−
1. There exists also a definition of q-theta functions working for 0 ≤ |q| < 1
but not for roots of unity [25]. The q-theta functions assigned to roots
of unity would be associated with Riemann surfaces with additional Zn

conformal symmetry but not with generic Riemann surfaces and obtained
by simply replacing the value range of characteristics [a, b] with the new
value range in the defining formula

Θ[a, b](z|Ω) =
∑
n

exp [iπ(n + a) · Ω · (n + a) + i2π(n + a) · (z + b)] .

(38)

for theta functions. If Zn conformal symmetry is relevant for the definition
of fractional thetas it is probably so because it would make the generalized
theta functions sections in a bundle with a finite fiber having Zn action.

This hierarchy would correspond to the hierarchy of quantum groups for
roots of unity and Jones inclusions and one could probably define also corre-
sponding zeta function multiplets. These theta functions would be building
blocks of the elementary particle vacuum functionals for dark variants of
elementary particles invariant under fractional modular group. They would
also define a hierarchy of fractal variants of number theoretic functions:
it would be interesting to see what this means from the point of view of
Langlands program [26] discussed also in TGD framework [E11] involving
ordinary modular invariance in an essential manner.

This hierarchy would correspond to the hierarchy of quantum groups for
roots of unity and Jones inclusions and one could probably define also corre-
sponding zeta function multiplets. These theta functions would be building
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blocks of the elementary particle vacuum functionals for dark variants of
elementary particles invariant under fractional modular group.

6.2.4 Hierarchy of Planck constants defines a hierarchy of quan-
tum critical systems

Dark matter hierarchy corresponds to a hierarchy of conformal symmetries
Zn of partonic 2-surfaces with genus g ≥ 1 such that factors of n define
subgroups of conformal symmetries of Zn. By the decomposition Zn =∏

p|n Zp, where p|n tells that p divides n, this hierarchy corresponds to an
hierarchy of increasingly quantum critical systems in modular degrees of
freedom. For a given prime p one has a sub-hierarchy Zp, Zp2 = Zp × Zp,
etc... such that the moduli at n+1:th level are contained by n:th level. In
the similar manner the moduli of Zn are sub-moduli for each prime factor
of n. This mapping of integers to quantum critical systems conforms nicely
with the general vision that biological evolution corresponds to the increase
of quantum criticality as Planck constant increases.

The group of conformal symmetries could be also non-commutative dis-
crete group having Zn as a subgroup. This inspires a very short-lived conjec-
ture that only the discrete subgroups of SU(2) allowed by Jones inclusions
are possible as conformal symmetries of Riemann surfaces having g ≥ 1.
Besides Zn one could have tedrahedral and icosahedral groups plus cyclic
group Z2n with reflection added but not Z2n+1 nor the symmetry group of
cube. The conjecture is wrong. Consider the orbit of the subgroup of ro-
tational group on standard sphere of E3, put a handle at one of the orbits
such that it is invariant under rotations around the axis going through the
point, and apply the elements of subgroup. You obtain a Riemann surface
having the subgroup as its isometries. Hence all discrete subgroups of SU(2)
can act even as isometries for some value of g.

The number theoretically simple ruler-and-compass integers having as
factors only first powers of Fermat primes and power of 2 would define a
physically preferred sub-hierarchy of quantum criticality for which subse-
quent levels would correspond to powers of 2: a connection with p-adic
length scale hypothesis suggests itself.

Spherical topology is exceptional since in this case the space of confor-
mal moduli is trivial and conformal symmetries correspond to the entire
SL(2, C). This would suggest that only the fermions of lowest generation
corresponding to the spherical topology are maximally quantum critical.
This brings in mind Jones inclusions for which the defining subgroup equals
to SU(2) and Jones index equals to M/N = 4. In this case all discrete sub-
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groups of SU(2) label the inclusions. These inclusions would correspond to
fiber space CP2 → CP2/U(2) consisting of geodesic spheres of CP2. In this
case the discrete subgroup might correspond to a selection of a subgroup of
SU(2) ⊂ SU(3) acting non-trivially on the geodesic sphere. Cosmic strings
X2 × Y 2 ⊂ M4 × CP2 having geodesic spheres of CP2 as their ends could
correspond to this phase dominating the very early cosmology.

6.2.5 Fermions in TGD Universe allow only three families

What is nice that if fermions correspond to n = 2 dark matter with Z2

conformal symmetry as strong quantum classical correspondence suggests,
the number of ordinary fermion families is three without any further as-
sumptions. To see this suppose that also the sectors corresponding to
M4 → M4/Z2 and CP2 → CP2/Z2 coverings are possible. Z2 conformal
symmetry implies that partonic Riemann surfaces are hyper-elliptic. For
genera g > 2 this means that some theta functions of θ[a,b] appearing in the
product of theta functions defining the vacuum functional vanish. Hence
fermionic elementary particle vacuum functionals would vanish for g > 2
and only 3 fermion families would be possible for n = 2 dark matter.

This results can be strengthened. The existence of space-time corre-
late for the fermionic 2-valuedness suggests that fermions quite generally
to even values of n, so that this result would hold for all fermions. El-
ementary bosons (actually exotic particles belonging to Kac-Moody type
representations) would correspond to odd values of n, and could possess
also higher families. There is a nice argument supporting this hypothesis.
n-fold discretization provided by covering associated with H corresponds
to discretization for angular momentum eigenstates. Minimal discretization
for 2j + 1 states corresponds to n = 2j + 1. j = 1/2 requires n = 2 at
least, j = 1 requires n = 3 at least, and so on. n = 2j + 1 allows spins
j ≤ n− 1/2. This spin-quantum phase connection at the level of space-time
correlates has counterpart for the representations of quantum SU(2).

These rules would hold only for genuinely elementary particles corre-
sponding to single partonic component and all bosonic particles of this kind
are exotics (excitations in only ”vibrational” degrees of freedom of partonic
2-surface with modular invariance eliminating quite a number of them.
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